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The purpose of this paper is to collect certain wave propagation
results in two-and-omne-half dimensions — defined as three dimensional
propagation in a medium that has variations in two dimensions omly. The
results of interest are for sources and receivers in the plane determined by
g the two directions of parameter variation. The objective of this work is to
N reduce the analysis of the in-plane propagation to two dimensional analysis
- while retaining -— at least asymptotically —— the proper three dimensional
. geometrical spreading. We do this for the free space Green’'s function and
for the Kirchhoff approximate upward scattered field from a single
reflector. In both cases, we carry out a derivation under the assumption of
a background velocity with two dimensiomal — ¢(x,z) — wvariation, we
specialize the results to a constant background velocity and a depth
dependent background velocity. For the convenience of the user we have
included a glossary and two tables of equation numbers to help in finding
specific results.
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A(x)

A, (x)

c(x)
c(z)

c,(c_)

n(z)

t(x)

amplitode of ray theoretic Green’'s function ia 3D, constant
density.

amplitude of ray theoretic Green’s function in 2D, constant
density.

ray parameter labeling rays; polar angle of initial direction
in (x,y)-plane.

amplitude of ray theoretic Green’'s function in 3D, variable
density.

amplitude of ray theoretic Green’'s function in 2D, wvariable
density.

ray parameter labeling rays; szimuthal angle with respect to
z; becomes polar angle in (x,z) plane when y = 0.

background velocity.

background velocity depending on z alonme,

propagation velocity below (above) reflector, S.

Jacobian of mapping via rays in 3D, 3(x,,x,,x,)/3(c,a.B).
Jacobian of mapping via rays in 2D, 3(x,,x,)/3(c,B), @ = 0.

index of refraction with c¢(z) background velocity,
n(z) = c(&,)/c(z).

Ve, pep = 1/c*.

ray theoretic reflection coefficient defined by (46),
specialized to constant background velocity in (62).

Vix, - £ + (x, - §,)

variable density.
ray parameter for which i* = 1/c¢® along a ray.

traveltime.
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upward scattered wave from a reflector S due to & point
source at { evaluated at 1.

Cartesian coordinates.
Cartesian cocrdinates.
Cartesian coordinates.
(2,,0,¢,), source point for Green's function.

turning point; n(zp) = sinf.
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1. INTRODUCTION

The gathering of seismic data over a line on the surface of the earth
or ocean — rather than over a plamar or areal array — is still a pre-
eminent methodology. Consequently, methods of reflector imaging and earth
parameter estimation — migration, structural inversion, seismic inversion
~— must be based on models of the substructure and wave propagation which

can produce meaningful results from this dimensionally constrained data.

Finite difference wave equation migration [Claerbout, [1976] deals with
this difficulty by assuming a two dimensional model, both for the
substructure and the wave propagation. The two dimensions are the depth —
X or x, — and the transverse range along the 1line of the seismic
experiments x or x,. While it might be reasonable to assume that the out-
of-plane varistions are small enough to be neglected, the implementation of
s two dimensiomal wave equations guarantees that the amplitudes generated
will be progressively more inacourate with traveltime due to improper
charscterization by the two dimensional wave equstion of the geometrical

spreadiang offects in three dimensions.

Oa the other haad, Kirchhoff migration (Schneider, 1978], k-f migrationm
V:!tolt. 1978], aad Bora Inversion [Cohen and Bleistein, 1979], among others,
properly allow for three dimensional propagation of waves — within the
sceursey of the asswmptions of these methods. However, neither these
methods nor any other caa treat three dimensional wvariastion in the

substructure wvhea oaly a linear survey is carried out on the surface. The

limitation of the data is accomodated by assuming that the earth parameters




vary only with the in-plane variables — (x,z) -- and are independent of the

out—of plane variable, y or x,;-.

Thus, the earth variations are essentially two dimensional —
cylindrical in three dimensions — while the propagation is three
dimensional. A few years ago, I heard a presentation by G. Hohmann on an

electromagnetic problem with the same type of geometry. He called this case

two-and one-half dimensional —— 2%/,D. I have adopted that terminology, as
well,

In 2%/,D one is almost always interested in only in-plane values of the
wave field; that is, values of wavefield with y or x, equal to zero.
Certainly one needs only in-plane values of the earth parameters. Thus,
except for the effect of three dimensional spreading, the problems of

interest are essentially two dimensional.

In research in our own group, we are constantly in need of in-plane
evaluations of 2’/,1) asymptotic wave fields both for inversion algorithms
and for direct modeling. We find that we can reduce such wave fields to 2D
wave fields multiplied by appropriate factors, also determimed totally in
2D. The purpose of this note is to derive and tabulate some of those
roesults. The starting point for these results is either three dimensional
ray theory or a generalized version of the Kirchhoff approximation for the
upward scattered wave for a single reflector. These results are available
from many sources. However, I shall use my own book [Bleistein, 19841 —
reforred to below as MMWP — because I can find those formulas most essily

there.




;? We shall state results for s c(x,z) background velocity and specialize
ti those to constant background velocity where the results become explicit and

to a c(z) background velocity where the results are somevhat more explicit
;j' than in the general case. For most of the paper, we discuss the case of
constant density and variable soundspeed. However, in Section 5 we describe
the necessary modifications for variable density. For the convenience of
the user I have included a glossary of the motation of this paper and two

tables of ecuation numbers to help in finding specific results.

St
. S
I GO O Wiy Y DN

(DA R
i
o

e et
Vel e e e
PR

PO RN
[}
w
]
1
®
Ll




2. ASYNPTOTIC 2%/.D GREEN'S FUNCTION

We consider the following problem for u:

v'e +-2;-u = -6(x‘- t,) 8(x.) 8(x - §) . (1)
c

In this equation, V* is the Laplacian in the variables x = (x,y,2z) =
(x5, x5,%3) and ¢ = c(x,2z) = c(x,,x,). We use the convention that z = x, is
positive downward. We propose to solve this problem by ray methods [Keller,
1958, Lewis and Keller, 1964). Our objective, here, will be to reduce this
ray theoretic problem in three dimensions to a problem in two dimensions
when x, = 0 while still retaining the correct solution of the three
dimensional problem by appropriate adjustment of the equations and scaling

of the solution.

Ve assume that

u(z;0) ~ A(x) expliwc(x)) (2)

with © a solution of the eikonal equation,

(vo)* = 1/¢*(x) (3)

and A a solution of the transport equation

2VA-Vz + AV g =0 . (4)
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(See MMWP, Sections 8.2 and 8.3, for details of the derivation of these
equations and results below related to ray theory.) The functions, t and A,

must also satisfy the conditioms

t =0, for X = : = (C;DODC') (s)

|z-g) A > 1/4n, as x> ¢ . (6)

We shall solve (3), (5) by the method of characteristics. The

i‘ characteristic equations or ray equations are ®

h % :

®
’ =p, p=Vo p =1/c*(x)
5
P=rVAS) . (=g . N -®
t =1/c*(2) . ®

The solution we seek is the conoidal solution for which the rays emanate

from a point, §. We require initial data at o = 0 for each of the seven -'-‘_~-:-':'-

unknowns in (7). The data for v is given in (5), since the rays emanate

from §, the initial values of x are kmown, For the conoidal solutiom, the




initial values of p are not known, except that they must be constrained by

the eikonal equation, (3), itself: p® = 1/¢*. Thus, there are two other

parameters which serve to label a ray by its initial direction. Therefore __ " j
[

the initial data or ray dats for (7) is

i x(0) = ¢ ‘. s

p(0) = 1/c(f) (cosasinB, sinasinP, cosB) . (8)
l;
) z(0) =0
@
The solution of ordinary differemtial equations (7) and the ray data (8) is
a family of rays with parameter o, distinguished from one another by the
choice of the parameters a and B. Along each ray, the value of v is known, ". ﬂ
as well,
]
The specific assumption that ¢ is independent of x, allows us to obtain it

a part of this solution in closed form. From (7), the equation for p, is

s =9 1 .
P, ox, 3 * (9)
c
Thus, p, is constant on each ray, that is, independent of o. From the ray !_

data in (8), we know the value of that comstanat, ::_'-ij:':;'

p, = ??1';7 sina sinp . (10)

With p; independent of o, the equation for x, im (7) now becomes

e e e e e s -
PR S R I Y Q
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particularly simple. Taking account of the initial data in (8), we find

that

x, ";Tcp"““ sinp . (11)

We remark that x, = 0 for any choice of (x,,x,) omly if we choose those

rays for which sin a = 0.

The transport equation, (4), can also be written as an ordinary
differential equation in the ray parameter, o. The solution of that

equation is [NMWP (8.3.12)]:

A ysin $

= . (12)
4n F(Q)I(G. a, B)

In this equation, J is the Jacobian of the transformation from x to (s,a,B)

via the solution of the ray equations, (7) and (8):

a(x » X »X )
I . (13)

a(o,a, p)

....................................................
..........




o
The following changes in notation from the referance have been made here:
(1) va2 o8, (i1) pl(xy) > 1/c(P); (iii) p(x(o)) J(e) - J(c,a,B). For the
last of these, we have used (8.2.29) with A =1 to redefine J as in (13). ~.
. The solution (2), with t a solution of the system (7) and (8) and A
;- given by (12), is valid up to the first zero of J for o # 0. -. o
} S
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3. Asymptotic Ix-Plase 2*/.D Green's Fumctioa

We shall now consider the results of the previous section for the case
x; = 0. VWe shall refer to this case as the in-planme solution. As noted

above, setting x, = 0 is equivalent to setting a = 0 in (8) and (11).

Let us consider the remaining equations in (7) and under the assumption

that a = 0:

;: =P, x‘(O) = t, :

;n =Py » x'(O) = gl ’

. 1 3 I 1 . sin B

P, =5 » P (0) = ’ (14)
2 8x, lc’(x,. x,) . * c(2)

. 1 3 [ 1 ‘ cos B

P20 s, ’ (@)

PR S ‘o =0 .

¢ (xl.x,)

This is a closed system of equations for which p: + p: = llc’(g). since
ps = 0. In fact, it is just the system of ray equations for solvimg the
eikonal equation in two dimensions. Hence, an algorithm for solving ray
equations in 2D may be applied to determine the in-plame rays and phase. I

do not believe that this would surprise anyone who has read this far.
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Let us now consider the solution (12) for the amplitude where a = O.
In particular, from (11), we can calculate the elements of the second row of

the matrix arising in J, (13):

ax’ 1

Tg—-msincsinﬂ-o. ea=0;;

ax

—aai-c'(’Tcosasinﬁ =a‘-’a—sinﬁ. a=0; (15)
ax’

-é-B—= c?{ sinacos =0, a=0 .

VWe see that only the second element is nonzero. Thus, the 3x3 determinant

in (13) can be reduced to a 2x2 determinant,

J = ?‘(’;—) sinp K ; (16)
a(x » X )
i )
' 3. P I I an
a=0

The Jacobian, K, can be computed directly from the system (14) for the

solution of eikomal equation in two dimensions. We unse (16) in (12) and

obtain
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A= . (18)

By using (14) and (18), then, we obtain the in-plane 2'/,D asymptotic

Green's function totally in terms of solutions of the 2D ray equations. Ve

remark that it was the simple form of this result which motivated the
particular choice of ray parameter o, for which 3’ = 1/¢*(x), rather than
such alternative ray parameters as arc length on a ray — for which g’ = 1
— or traveltime — for which 3’ = c*(x). We note, however, that o is an

unphysical variable with dimensions (length)>/time.

The in-phase representation of the solution (2) now takes the form,

o ~ 2P {iwr)

4n{a

» (19)

with t, o and K totally determinable by in-plane calculations. Nometheless,

this solution has the proper geometrical spreading for three dimensional

propagation.
- 1
The solution (18) can be more precisely related to the solution of the %
two dimensional transport equation. (The reader should note, bhowever, that - :
the latter amplitude is the response to a line source in three dimenmsions.) 9 ) :

Let us denote that solution in 2D by A,. The result is given by MNP

(8.3.30), but in different motation. The correct result is

J
Aol ey

.
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oxp {in/4 sgn v} (20)

2 en x o]

In this equation, we have also included the proper power of @ as given from

A, =

the discussion above (8.3.30) and we have accounted for negative o, through

the absolute values and the factor sgnow.

By comparing (18) and (20), we find that

A=A, E%I;— exp {(-in/4 sgaw) . (21)

Thus, if one has available a 2D ray equation routine which calculates A,

directly, one can use this routine to generate the in-plame 22/3D amplitude

by employing the complex scaling indicated by (21).

I further take the position that this multiplier is an adequate “quick
and dirty” correction to apply to an exact 2D equation solver. The reason
is that in geophysical applications, we are almost always interested in the
solution many — at least three — wavelengths from the source in a2 slowly
varying background medium. In that limit (high frequency), an asymptotic

adjustment will suffice.

It should also be noted that all refraction and reflection effects of
the in-plane 2‘/,D propagation will remain in-plane. Thus, the same
multiplier can bde used for a discontinuous o¢(x,z). However, one must take

care to measure o from the source point and not from the discontinuity




surface. Furthermore, one must then use an amplitude A, vhich properly

sccounts for in-plane transmission effects.

? For two special choices of c(x,x) we cam be more explicit abost the
;& relationship between o and the Cartesian coordimates. In the simplest case,
¢ = constant - c,.» the ray equatioms, (14)., with the iadicated ray dats can
' be solved explicitly. First we observe that p, = p, = 0 and (p,,p,) is o
constant vector given by the initial dats with o(f) - ¢c,. Ve them solve for

x, and x, in (14):

2, =%, ¢+ c,-;c sinp, x, = § + ¢ "o cosp, v = o/c (22)

2 We now solve for o in the first two equations

o =cr r=\x,8) +x,-E,)" (23)

and find, uvpon substitution into the third equation,

T = rlc. (24)

Furthermore, we can find K by applying the defimition (17) to the equations

for the rays in (22). The result is




K =alc, =zle, (25)
Ve use (23) and (25) in (18) to obtain
-3
A = (4nr) . (26)

By inserting (24) and (26) in (19) we obtain the exact three dimensional
Green's function, which indeed, is equal to its leading order asymptotic

n expansion. This serves as a simple check on the method.

As a second example, let us suppose that ¢ is a function of z above,
- ¢ = ¢(z) = ¢(x,). In this case, it is easier to recast (14) as a system of

equations in z and express o as a function of z, as well. We rewrite (14) as

-a-z—-; , x (3,) 3, 7

L ' r, (3, (g ! .

dp' 1 d 1 cosp

rraiel v sy R AR b il (21 -
s c (z) ’

J LAY
dc 1
[l &

’ %Z";l' . olg,) =0 . '

. ]

A

A e .
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L WS Wy S S|




From the second oquation, here we see that p, is a constant on each

- ray, given by its initial value:
.j: - 1 i
E P, BT,y b - (28)

This is Snell’'s law for a medium with depth-dependent velocity. Since

(P;,ps) satisfy the eikonal equation in the form inm (7), we conclude that

p' = J .1 - ‘1 'in’” . (29)

) c(z) ¢ ()
We have chosen the positive square root, here, because we are interested in
i rays which are directed downward; that is, z must increase with o. At z=%,,

the square root is real for all B. For |B] ¢ w/2, p, will remain real in

some neighborhood of §,. We continme our analysis ia that region.

We can now proceed to solve the remaining equatioms inm (27) R
O
) Ly
- _‘.':lv -3
) ®
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| X!

z
_ - 8inp dz’
s °®) [, in®
l 3 - 3’113 ’
¢ (z°) ¢ (§,)
&
z
* = dz’ ’ (30)
c*(z") l 1 sin’p
ez (g,
&
z
dz’
c = .
l 1 _ sin:ﬂ
c’(z') ez(ti)
L

It is this last factor which we use in (18) or (17) or (21) to adjust the

in-plane Green’s function for geometrical spreading out-of-plane.

For computational purposes, it is desirable to express these results in

terms of an index of refraction:

c(t)
a(z) = -y (31)
Those equations are ° 1




T —— T~ T —————

ke

z
dz’
x, - ¢, = sinf ’
’ ’ ‘n’(z') - sin’p
L
z
< = ZT%"T n?(z')dz’ , (32)
’ 'n’(z') - sin’p
L
z
o = c(§,) dz_ .
‘n’(z') - sin’p
g

To complete the computations for the Green's function for this case, we
must determine K, defined by (17). To simplify the computation, we note

that

o(x_,x) a(x_,z) a(z.B) dx_ 0z
,.|= . | o=, (33)

a(a, P) (B, 2) aTa.p)| = |ap 0]

by application of the chain rule for Jacobi determinants. The derivatives
in the last expression are partial derivatives because x,,z are determined
in the plane ss functions of the two variable B,z. We calculate 3x,/3f from
the first equation in (31), 92/36 is determined from the last equation in

(28). The result is that

Lot tens)
IO W ST ¢




b 4
ox Jz ] ]
k= | . 3=l - {n’(z) - sin’p °‘("L) n’(z')dz 5 (34)
IR c(Z, (n*(z’) - sinp)’

S

We can now use (18), (30) and (32) in (19) to write down the asymptotic
2"/,1) solution evaluated in-plane. The result is given parametrically with
parameter B. For each coordinate pair, (x,;,z), we determine B from the
first equation in (32). We substitute this solution into the second and
third equations of (32) to determine T and o, and we substitute into (34) to
determine K. When all of these results are substitunted into (19), u is

determined.

We remark that the function K in (34) is never equal to zero for
z & ,. That is, the downward propagating part of the Green's function in a
c(z) medium has no caustics. The only pathology that could occur is that
for some B, the ray propagates to a depth, zg, such that n(zB) = sinf. If
we assume that n'(zp) # 0, then K has a finite nonzero limit at zg even
though the integral in (34) diverges for z = zg. To see why this is so,
multiply and divide by n'(z’) under the integral sign and integrate by

parts. The result is

'.-.‘-. ",
' o .

. ‘.. S
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4
L

'r‘ K = Jn’(z) - sinp ﬂ(’%%. - n(z) . n(g')
' c
L:.: (3%)
z
+ [ n(z')] dz'

'.u'(z').l ﬂ’(z') - sin’b)
g,

The integral, here, converges even when z = zg. Thus, if we now take the

limit as z = zg, we find that

4
L
n(z )
lin K = - 228 B | (36)
_ﬁ z Zg 3 né(z )
E To be completely rigorous in this derivation, we should only integrate by
g parts over an interval from z, to 2z, where z, is sufficiently close to zg to
guarantee that n'(z) #0 for z, £ z £ zg. Of course, the same result
b:. obtains because the remaining integral on the interval form &, to z, remaias

finite as z 2g while the square root multiplier approaches zero in that

;-_ limit.

The point zg is a turning point for the ray labeled by f. On the

continuation of the ray, z decreases. To obtain the extemsion to this ray

continpation, we need only replace the integral over the interval (Z,,z) by

- 19 -




o ]
a pair of integrals over the intervals (z,zg) and (&,,zg): j
t, z . 1
x, - §,= sinf [ + [ dz’ . W‘
‘n’(z’) - sin*p RN
s ]
*
g, 2 .
1 nz(z')dz' (37) l
T = m— + » 3
Ya*(z') - sin’g |
z Rl
(I o
g, z '
o = cl(&,) [ + [ dz_ .
- {n’(z') - sin’*p : |
zﬁ zB o :
The determination of K is not so straightforward. We cannot simply
. T
differentiate the first 1linme, here, to determine 3x,/3B, because the & .
resulting integral diverges. We must first integrate by parts as was done
above to analyze K near zg,
... o
2 . 3 n’(t ) - sin® B ®
x - % =sinp ‘F(z)-un B + ) 3 \
n(z)n’(z) n(g,) n'(g,) -}I-‘ <
- (38) sl
g' z ’ .
- [ + I &—1—] {n’(z') - sin*p 4z’ , .
(z")n’'(z") L
R 5%
»
- 20 - .




and then differentiate with respect to f. This leads to the following

result for K:

K= ‘n’(z) - sin’®p %?-E-.-ﬂ,-

n’(z) -2 '1n3p n’({,) -2 3in’ﬂ

n(z)n’'(2) ‘n’(z) - sin’p a(Z, )a’ (%) Jn’(g’) - sin*p

3 z ' (39

_ [+I [ 1 ]n‘(z')-zsin’p a4z’

l.u(z')n'(z').' Jn'(z') - sin’p

Again, we must take care mot to use this result if n’(z) = 0 over some part
of the domain. We would revise this result by using the integration by
parts technique only over a portion of the domain of imtegration near zg in

(37) and simply differentiating with respect to B in the remaining integral.

We remark that now K can be zero for an appropriate c(z). That is,

beyond the turning point, the ray family can have a caustic.

This completes our discussion of the in-plane analysis of the 2‘/,0

asymptotic Green’s function.
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4. The In-Plame Kirchhoff Approximatioa ia 2%/,p.

We shall now comsider the following problem in a c(x,z) mediom. A -

[
point source is located at (%,,0,%,), a receiver is located at (n,,0,n,) and .
a reflecting surface, S, is located at depth. Consistent with our interest
in 2'/,D, we assume that the reflector is cylindricals that is, the ~. k
reflector is gemerated by a curve in the (x,z)-plane and straight 1lines
through that curve parallel to the y-axis. Thus, we characterize the
reflector by the generating curve C in the (x,z)-plane. -
L
C: x = xl(s). z = x'(s) . (40)
‘,.
We shall take s to be an arclength varisble slonmg C. Our objective is to
obtain an asymptotic representation of the upward propagating wave arising -..~_
o
in response to the reflector under the assumption that the dowaward el
propagating wave has no caustics before impact with the reflector. Our :'_':.':_'{::
representation is to be given totally in terms of in-plane functions. ........
4
The reflector is to be a surface of discontinuity of the velocity
profile, with no discontinuities above it. Thus, we will demote by c_(s) .
and c,(s) the limits of c(x,z) from above and below S, respectively.
We begin our analysis with the Kirchhoff integral representation of the "
upward scattered field [MMWP(8.4.5)]:
®
- 22 - ?

.................
-------------
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- G(x.n)

3G(zsn) aus(x.r;) ] & ()

us(n.g) = [ [us(x.g)
S

In this equation, ug(ns{) demotes the response at m due to a source at I/
G(z;n) is the free space Green's function at x due to a source at ys 3/dn is

the upward normal derivative on S.

Ve shall make a number of asymptotic approximations im the inte-
gral (41), First, we shall use for G the asymptotic Greem's function of
Section 2. Ve cannot, as yet, use the results of Section 3, since the
integration in (41) is over a demain which extends out of the plame, y = 0.
To emphasize the dependence on the source point, we write the solutiom (2)

G(xsn) = A(zsn) exp {dwc(zsn)) . (42)

For the normal derivative of G, we only calculate the leading order term at
high frequency, arising from differentiating only the exponent:

8G(xzq)
~5o— ~ iefVe(z/m) ANzn) expliwc(zsn)) (43)

Here, # is an upward wmmit normal vector and the gradieamt is to be calculated
with respect to the variables, x. It would be inconsisteant to retain the

term arising from the differentiation of A, itself, since this is of the

- e —




same (lower) order as a term arising from a first order correction to A

multiplied by ief-vr.

For ug(x:;f) on S, we will use a ray theoretic approximation. This
field is the reflected wave on S due to the incidence of the wave in

response to the point source at {. say, uy (x;f). This fuaction is also a

Green’s function:

ﬁ v (xsg) = 6(xed) . (44)

The value of ug(xs%) on S is just the ray data for the upward reflected

L wave. This ray data is derived in [MWP, Section 8.3). VWe find that

ug(z:E) = Rug(x;8) , zon$ , (45)

where the ray theoretic reflection coefficient is given by [MMWP(B8.3.47)]:

dty/3n - [un azI/an] lc:’-— c:’+ [azI/anl’

R = : (46)
arI/an + [ssn atI/anTl c:l_ c:’+[at1/an]’
In this equation, we have used the notation
T
- vlxid) ¢+ 5 = Roe(gE) )
Ty = t(x e t(x: .
- 24 -
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In summary, then, we use on 8

ug(z:8) ~ R A(x:8) exp {iwx(z:2)) ._
(48) L
a‘s(lo‘ﬁ) '_:';'
—g— ~ ~ 1oL Vr( DR A>3:2) exp lder(zs2)) . pete
®
The minus sign in the second line here is not obvious. It arises from the
fact that the normal compoment of the gradiemt of the phase on the reflected ”. :
wave must be opposite in sign to the normal component on the incident wave .1
1
in order that the incident and reflected waves be oppositely directed with ;
respect to S. . {
These two approximations constitute a generalization of the . - }
approximations credited to Rayleigh, Sommerfeld, Fresnel and Huygens, as '.
well as Kirchhoff. For discussions of the distinctions between these \T
spproximations, see Goodman [1968], EKuhm and Alhilali [1977] and Wolf and ~:~
Marchand [1964]). For simplicity, we shall refer to (46) as the Kirchhoff ‘® """ﬂ
spproximation.
We substitute (40), (41) and (46) into (31) and obtain ®
ug(irm) ~ ie I RA(z:8) A(zsn) expliwlc(z:E)+x(x:n)]) .
s .® 4
« Relve(gen) + Ve(ze2)l 88 . (49) :
o |
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This asymptotic representation is given in terms of the 2%/3D ray theoretic
amplitude and phase introduced in Section 2, However, it still requires out

of plane computations of amplitude and phase.

We will pow reduce the representation (49) to ome in which the
integrand is given totally in terms of the in-phase amplitude and phase. To

do this, we note first that

dS = dsdy = ds dx, . (50)

That is, the differential surface area is the product of the differential

arc length ds along the genmerating curve, (40), and the differential out-of-

phase coordinate.

¥We will calculate the integral inm y = x, by the method of stationmary

phase [MMWP, Chap. 2]. The phase is

$(x:8:n) = v(x:8) + v(x:m) (51)

with first derivative

2% dv(z:e) iz

¥, " * I = p,(x:8) + p,(z0) (52)
3 3 3

In the last equation, we have used the notation of (7), but with arguments

that properly relate each p, to the corresponding <.

—w Y - i — .. -
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At the stationary point, 3§/3x, = 0. Thus, the sum of the p,’'s must be

zero. From (10) and (11) we see that both p,’'s will have the same sign as

x,, for x; 4 0. Thus, the sum can only be zero when x, = 0,
phase has s stationary point in x, only for z, = 0. In

parameters a and B, this occurs at a = 0.

Ve must now determine

3’5 ap,(x:3) ap,(z/0)
= +

ax: 81’ ax’

at x, =0 or a = 0. To do this, we rewrite (11) as

x’=p’c

and differentiate implicitly with respect to x,:

When we evaluate at p, = 0, we find that

That is, the

terms of the

(53)

(54)

(55)
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—-%,p’.o, (56)

This result aspplies equally to p,(z/8) and py(zsM), except that o must be
J properly interpreted as the parameter on the corresponding ray, that is, the
parameter commecting X to  or x to n. To distinguish between these two ray

parameters, we shall denote the first by % and the second by On* Thus,

|
v | )
3
23 - L. L (57
ox, 4 n
x =0
» e

We note that sgn 3¥/9x, = + 1 at x, = 0. This result is needed for the
stationary phase evaluation., Furthermore, the entire integrand is to be
evaluated at x, = O, that is, in-plane. Thus, we may use the results of :\'j_'jf:“-_:

Section 3, to determine A, t snd o, now for each of the fixed points, §, and KNS

n. The result is

. L)~ VI21IJ0| exp(3ni/4_sguu) R exp {iolt(x;E)+e(z:q)])}
(41!). ‘c K0 K (a, + q-l) ¢ 1
EX ¢ n -
Czx,=0 . .j ]
(58) DR
x N
-'_ © R-[Ve(x:8) + Ve(zey)) ds. -._ 1




In this equationm, ‘§ and K are the in-plane Jacobians defimed by (17) for
the rays emanating from { and 3. respectively. Evaluation of the integrand

at x, = 0 reduces all of its elements to the in-plane results of Section 3.

It is slso worthwhile to specialize (58) to the case of backscatter or

zero—offset, us(;.'g). We can then dispense with the subscripts { and n.

The result is

-
1

g "s(i"i’ ~ {L;l—o::s:lﬂsggnu] R exp {ziI:-(x.'g)l B:Ve(x:g) ds . | .,
C.x,= 0 (59)

) .
The results, (58) and (59) are asymptotic representations of the 2'/,])

i in-plane reflection response for nom-zero or zero offset observationms, :*.”
respectively. These formulas are starting points for either numerical if.-:_-__
computation of the remaining integral or further asymptotic analysis — say,

i stationary phase in the arc length s. Thus, we have achieved a “"
representation of the in-plane fields in the 2‘/,1) case with the properties g
carried out in-plane (x, = 0) and, nonetheless, the effect of geometrical - 1

'. spreading is accounted for, asymptotically. >. o

- 1
As in Section 3, we now consider the special cases of oconstant

) background velocity and depth dependent background velocity. For the former ~' j
case, we use the results (23, (24) and (25) to obtain in place of (58) . 1

et

) .o )

i
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w (gem) ~ ‘anu] exp {-ni/4 sgn w} R oxp {i“[t§+ rn]lco}
3
(4n) ‘T:: rtrn r-:. + r-:
¢ n
C.x’= 0
(60)
. ﬁ°[tg + rn] ds .

In this equation, Ty is the distance defined by (22) while rn is the same
function with § replaced by 3. Furthermore, f is the wnit upward normal to

C

(g
(]

?g = (¢~ x,.8,-x )/ £ =(-x, n-x)/r=- e, Velxsn) (61)

and, from (46),

ﬁ‘?tlc° - JQI, - c:’ + [ﬁ'?glcolz

2t sc, +¥o,P - o) 4 8t se 1

e
O
]
]
.

+

We note, here, that 8 and fg are colinear and sgn ﬁ’ft = +1. It is apparemt
from this result that we have momentarily lost the symmetry of ug in § and
n. However, were we to apply the method of stationary phase to (60), we
would find that the dominant conmtributionms to the field at § arise from the
specular points, at which ﬁ'!n = B.,C and the symmetry would be restored.

Alternatively, we could redefine (62) as a reflection coefficient Rg to
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indicate its dependence on the source point { and then replace R§ by (Rt +

R“)IZ. We leave the reflection coefficient as R and leave the option to the

reader.

For the case of backscatter, { = 3, the result, (60) becomes

{lol oxp t-nis4 sgnw R exp{2iw r/c,}

n s/3 rc: rl/z

C.x’= 0

f-2 a5 . (63)

ns(§f§)~

with r given by (23).

We nov turn to the case of a depth dependent background velocity. In

this case, we can do little more than substitute into (58) or (60) the

parametric representations given by (32) and (34) — one for the ray family
emanating from { with ray parameter ﬂg another for the ray family emanating ;,fjif]

from n with ray parameter Bﬂ'

This completes the discussion of the asymptotic Z’I,D in-plane upward

scattered field.
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5. The Affect of Variable Deamsity

It is fairly straightforward to include the affects of variable density

in the results of the previous sections. Variable density does not change
the phase of the solution, but only the amplitude. Following Brekhovshikh

[1980], if we assume that u denotes pressure, then the governing equation

(1), is replaced by (op. cit., eq. (19.2))

h pV- [(1/p)Vul + 25w = - 8(x,- &) B(x) 8(x,- %) . (64)
c
| In this equation, p = p(x) is the variable density.

We will again assume that u is of the form (2). However, in
anticipation of a change in amplitude (but not in phase) we shall denote the
amplitude by B:

u(xs0) ~ B(x) exp {iv t(x)} . (65)

The phase v is again a solution of the eikonal equation (3), but B is a

solution of the transport equation
2VB-Vr + BpV(1/p) -Vz+ BV'x =0 . (66)

If we divide here by p’/’. we find that

32
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2v(Bp /Y ove + Bp /2 v =0 . (67)
h That is, Bp*/? satisfies the same transport equation as A does —- equation
4 (4) —— and hence,
[
3
-
B(x) = const. A(x) Yp(x) . (68)
i,_ Here, const. means constant with respect to the running parameter along the
o
rays. In fact, if ome were given the same ray data for B as we were
: previously given for A, then the initial value of B wounld have to agree with

the previous initial value of A, From this, it follows that

B(x) = A(x) Jp(;)/p(;,) (69)

where x, is the initial point on the ray.

The Green’s function, developed in Sectiom 2 is precisely a solution
for which the initial data for A at x = § — equation (6) —- now becomes the
initial data for B. Thus, from (12) we immediately determine that for 3D

propagation

‘p(glc.a.p)) sin B

an Ve(g) p(2) Tlo,a,p)

with J again defined by (13).

T oew
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In the specialization of Section 3 to the in-plane 2’/,1) Green's

function, we find from (18) that

e~

p(x(o,B))
4n Yo Kp(f) '

vry

" Y"rr
ERERRES

(71)

with K again given by (17) and x(o,$) the solution of the ray equations in

(14). PFurthermore, the representation (19) is now replaced by - 1

L
1
1 p(x(ac, B)) R
u n V-c—x_p_(_ﬁr exp f{iwr) . (72) .
"o i

The amplitude B can be related to the amplitude B, of the two-

dimensional asymptotic Greem’s function by (21) with A’s replaced by B's. .
However, B, is related to A, by (69) with subscripts 2 introduced on both ’.“‘:""*
- L
sides of the equations. _ B
RIS
.
o -- “.‘
For the case in which p and c depend only on z or x,, Wwe use (32) for t :—.-'. : i
and (34) or (35) for K. :
E

These results are to be substituted into (72) along with °

p(x(o, B)) p(z) S
LC - A e

The discussion of the in-plane Kirchhoff approximation in 2‘/,0. [




presented in Section 4, must also be revised to allow for a jump in demsity
as well as a jump in velocity. The reflection coefficient given in (46) was
derived under the assumptions that u and 9u/dn are continuous across S. For
the differential operator (64), we must replace those conditions by the
conditions that u and (1/p) du/dn must be continuous across S. Proceeding
as in the derivation of (46) given in [MMWP, Section 8.3]), we deduce that

the proper reflection coefficient is now given by

9:1 dt /3n - pzl [sgn 3t /dn] lc:’ - c:’+ [a:llanl’
R = . (74)
p:1 9t /on + p:‘[sgn 3t {da] Jc:’ - c::+ [atllanl’

In (49), we must replace A(x;%) A(z;n) by B(z:f) B(x;n) and use (74)

for R. VWith these adjustments (58) is replaced by

ns(g:g) ~

‘l2u|u| exp {3ni/4 sgn o) l‘ Rp (x) explielc(x:f) + t(x:q)]}

um® o) \o,K.o K (a" + o
c'xa =0 §¢nn ¢

(71%)
» & - [Ve(xs8) + Ve(xsq) ds .

The specialization of this result to zero offset replaces equation (59):

ug (&, :8) ~ B-ve(z:8) 8.

h“l oxp (3ni/4sgn u) l Rp_(x)exp(2iwc(x;¥))
K Jo
Cx,=0 r (176)

3ﬂ./’ p(%)
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[
For the case of a depth dependent density function, we need only

replace p(%), p(n) and p(x) by p(%,) and p(n,) and p(x,), respectively.
Furthermore, we use (32) and (34) for v, o, and K while still using (74) for

. ..
R. These results can be used in (75) or (76). -

This completes our discussion of the Variable Density case.
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6. CONCLUSIONS

A few results about wave propagation in two-and-one-half dimensions
have been derived. The first set have to do with the asymptotic radiation
of acoustic waves from a point source. The second set are related to the
Kirchhoff-approximate upward scattered field from a cylindrical surface at
depth. In both cases, we have found that the in—plane propagation of a wave
in three dimensions can be described totally in terms of in-plane
calculations which are no more difficult than would be carried out to

generate two dimensional models.

In our inversion research, we regularly develop our theory as if the
observations are known over a planar array on the upper surface. However,
we then specialize our results to the 2‘/,1) case in which data is known only
on a linme. VWe have already begun nusing the results described here to
generate synthetic data to test these 2’/,0 algorithms. This was the
motivation for this project and the utility to our group has already been

demonstrated.
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TABLE I

IN-PLANE GREEN'S FUNCTION
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VARIABLE DENSITY

72,17,14 72,32,34,73

PR ER

’ 'S
. o
]
I, L
"‘,
et ‘L'AJAL_L'_.'.A_'.A.

IR e o . oo . ; - RO . . - .
P IR I I T T U I TR T T - . DA SRR : el e ¥

L - - - - - L - - - . AR 4 . - . - - . T - - . hd - . "
R AR R A R I S RS B DR Rl TR R T T A N I S T I S P PP . RIS P N A S I I
. - P L) Pk O - h MRS PV Y RS AR AP AN A Y W PSP LN LY §)




; -
' TABLE II o
- IN-PLANE KIRCHHOFF APPROXINATE FIELD
2 o
7 CONSTANT DENS ITY e
K P
c(x, 2) c(z) o
“ nonzero ®
offset 58; 46' 17. 14 589 46’34. 32 60.61062'23
’ zero ]
offset 59,46,17,14 59, 46,34, 32 63,61,62,23
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specialize the results to a constant background velocity and a depth
dependent background velocity. For the convenience of the user we have

; included a glossary and two tables of equatlon numbers to help in finding e
specific results. - .. ftLl,“;ﬂv' e e
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